集成电路设备包括晶圆制造设备、封装设备和测试设备等,晶圆制造设备的市场规模占比超 过集成电路设备整体市场规模的 80%。
晶圆制造设备从类别上讲可以分为刻蚀、光刻、薄膜沉积、检测、涂胶显影等十多类,其合 计投资总额通常占整个晶圆厂投资总额的 75%左右,其中刻蚀设备、光刻设备、薄膜沉积设备是 集成电路前道生产工艺中最重要的三类设备。根据 VLSI Research 统计,2019 年按全球晶圆制造 设备销售金额占比类推,目前刻蚀设备(包含清洗设备)、光刻机和薄膜沉积设备分别占晶圆制 造设备价值量约 24%、23%和 22%。
随着集成电路芯片制造工艺的进步,线宽不断缩小、芯片结构 3D 化,晶圆制造向 7 纳米、5 纳米以及更先进的工艺发展。由于目前先进工艺芯片加工使用的浸没式光刻机受到波长限制,14 纳米及以下的逻辑器件微观结构的加工多通过等离子体刻蚀和薄膜沉积的工艺组合——多重模板 工艺来实现,使得相关设备的加工步骤增多。
二十一世纪以来,以氮化镓(GaN)和碳化硅(SiC)、氧化锌(ZnO)、金刚石为四大代表的第三代半导体材料开始初露头角。 [1]
第三代半导体材料具有更宽的禁带宽度、更高的导热率、更高的抗辐射能力、更大的电子饱和漂移速率等特性。 [1]
第三代半导体材料可以实现更好的电子浓度和运动控制 [1]
,更适合于制作高温、高频、抗辐射及大功率电子器件,在光电子和微电子领域具有重要的应用价值。目前,市场火热的5G基站、新能源汽车和快充等都是第三代半导体的重要应用领域。 [2]
半导体材料主要性能参数比较

第一、二代半导体技术长期共存:现阶段是第一、二、三代半导体材料均在广泛使用的阶段。为什么第二代的出现没有取代第一代呢?第三代半导体是否可以全面取代传统的半导体材料呢?
那是因为Si和化合物半导体是两种互补的材料,化合物的某些性能优点弥补了Si晶体的缺点,而Si晶体的生产工艺又明显的有不可取代的优势,且两者在应用领域都有一定的局限性,因此在半导体的应用上常常采用兼容手段将这二者兼容,取各自的优点,从而生产出符合更高要求的产品,如高可靠、高速度的国防军事产品。 因此第一、二代是一种长期共同的状态。
第三代有望全面取代:第三代宽禁带半导体材料,可以被广泛应用在各个领域,消费电子、照明、新能源汽车、导弹、卫星等,且具备众多的优良性能可突破第一、二代半导体材料的发展瓶颈,故被市场看好的同时,随着技术的发展有望全面取代第一、二代半导体材料。
新基建为国内半导体厂商提供巨大发展机遇:我国在第三半导体材料上的起步比较晚,且相对国外的技术水平较低。这是一次弯道超车的机会,但是我国需要面对的困难和挑战还是很多的。
4月20日,国家发改委首次官宣“新基建”的范围,正式定调了5G基建、人工智能、工业互联网等七大领域的发展方向。“新基建”作为新兴产业,一端连接着不断升级的消费市场,另一端连接着飞速发展的科技创新。值得注意的是,无论是5G、新能源汽车还是工业互联网等,“新基建”各个产业的建设都与半导体技术的发展息息相关。例如:以氮化镓(GaN)为核心的射频半导体,支撑着5G基站及工业互联网系统的建设;
以碳化硅(SiC)以及IGBT为核心的功率半导体,支撑着新能源汽车、充电桩、基站/数据中心电源、特高压以及轨道交通系统的建设;以AI芯片为核心的SOC芯片,支撑着数据中心、人工智能系统的建设。
不难看出,氮化镓(GaN)和碳化硅(SiC)为首的第三代半导体是支持“新基建”的核心材料。在“新基建”与国产替代的加持下,国内半导体厂商将迎来巨大的发展机遇。
导体主要材料及应用